
PRESENTED BY:

7/21/23 1

Robert McLay
TACC HPC

PEARC 2023
July 2023

Modern HPC Tools

Please Note:
• These modern tools are portable and effective on

almost all supercomputers around the world.
• Almost all tools covered in this presentation are open-

source. Most of them can be installed without system
administrator privileges.

• Please feel free to ask for access or installation
assistance when necessary.

• Demos and labs are available to all attendees.

7/21/23 2

Tools Make a Difference on HPC

• Great tools make a profound difference
• Require less effort to achieve some desired goals
• Save a lot of time and energy for both new and experienced users
• Enhance the user experience particularly on large-scale systems
• Under active development by experienced TACC members
• (Most of them) Available under open source licenses to public

7/21/23 3

Outline
• User Environment
 Lmod, SanityTool
• Workflow Assistance
 ibrun, Launcher, Launcher-gpu, Pylauncher
• Job Monitoring
 core_usage, show_affinity, amask,
• Runtime resource monitoring
 Remora

7/21/23 4

7/21/23 5

Lmod
 Manage your environment

 on a Supercomputer

User Environment (1)

7/21/23 6

There are environment variables for defining values used
by the shell (e.g., bash, tcsh) and programs executed on
command line.

An environment management package provides a
command-line interface to manage the collection of
environment variables associated with various software
packages, and to automatically modify environment
variables as needed.

User Environment

7/21/23 7

• Environment Variables (mostly)
o PATH (where to find command)
o MANPATH (where to find help)
o LD_LIBRARY_PATH (where compilers find libs, like MKL, etc.)
o Package environment variables (TAU_METRICS, etc.)
o Site environment variables for package (TACC_NETCDF_LIB)

• Functions and aliases
• Other possibilities: anything “unixy”

7/21/23 8

Lmod
• A Lua based module system
• A convenient way to dynamically change the users’

environment through modulefiles.
• Add or remove environment variable easily
• Handle MODULEPATH hierarchical problem for

complicated user environment
o Only have one version active
o Only load one compiler or MPI stack at a time

7/21/23 9

Basic Module Commands (1)
List the modules already loaded
$ module list

Show what modules are available to be loaded
$ module avail

Load a package
$ module load matlab

Unload a package
$ module unload matlab

7/21/23 10

Basic Module Commands (2)
Change from impi to mvapich2
$ module sw impi mvapich2

Go back to an initial set of modules
$ module reset

Access a modulefile’s help
$ module help lammps

Show the description section of a module
$ module whatis petsc

7/21/23 11

ml: A Convenient Tool
This means module list
$ ml

Module load and unload
$ ml matlab
$ ml -matlab

Do it in one single line
$ ml netcdf hdf5 -gsl

7/21/23 12

Save/load Your Own Collection (1)
Save the designed collection of modules
$ module save

Restore the designed collection
$ module restore

List the collections
$ module savelist

7/21/23 13

Users can have as many collections as they like.

Save to a named collection
$ module save my_collection

List the contents of a collection (default)
module describe

Restore that named collection with
$ module restore my_collection

7/21/23 14

Save/load Your Own Collection (2)

Define and Use Your Own Modulefiles

Define your own module files
• Start with an existing modulefile
• Easy to share with your colleagues

$ module use /scratch1/01255/siliu/mvapich2/modulefiles/
$ module load mvapich2-test/2.x-intel19

7/21/23 15

Create Your Own Modulefile
• Start with existing one built by a module expert

• An introduction of writing Modulefiles:
https://lmod.readthedocs.io/en/latest/015_writing_modules.html

• Mkmod: A tool automatically creates a modulefile
https://github.com/milfeld/mkmod

7/21/23 16

https://lmod.readthedocs.io/en/latest/015_writing_modules.html
https://github.com/milfeld/mkmod

7/21/23 17

Lmod References
• Lmod Documentation

https://lmod.readthedocs.io

• Monthly discussion via Zoom: See
https://github.com/TACC/Lmod/wiki/home

• TACC/Lmod on github
https://github.com/TACC/Lmod

7/21/23 18

https://lmod.readthedocs.io/
https://github.com/TACC/Lmod/wiki/home
https://github.com/TACC/Lmod

7/21/23 19

SanityTool
Make my user environment valid

Why SanityTool

• Improper or incorrect user account configurations slow
down/impede work progress

• These problems could be difficult to detect (or remember),
but not difficult to fix most of the time

• There are so many tools and scripts at each site, each
focusing on a few tests

7/21/23 20

A lightweight integrated tool to diagnose and
resolve these problems is necessary

SanityTool

• A lightweight generic and integrated tool
• Free and open-source software
• Created in a relatively standardized format
• Contains many useful and practical tests
• Can be conveniently used whenever necessary

7/21/23 21

Running SanityTool
$ module load sanitytool
$ sanitycheck --help

Sanity Tool Version: 2.0
Texas Advanced Computing Center
High Performance Computing Group
 [-h, --help] Help information
 [-s, --silent] Silent mode
 [-v, --verbose] Verbose mode (default)

7/21/23 22

7/21/23 23

1: Check SSH permissions:
 Failed
 Error: group permission on $HOME will cause RSA to fail!
 Error: other permission on $HOME will cause RSA to fail!
 Make sure you have a .ssh directory under your $HOME directory.
 You can use the following commands to set the proper permissions:
 $ chmod 700 $HOME #(750 and 755 are also acceptable)
 $ chmod 700 $HOME/.ssh
 $ chmod 600 $HOME/.ssh/authorized_keys
 $ chmod 600 $HOME/.ssh/id_rsa
 $ chmod 644 $HOME/.ssh/id_rsa.pub
 2: Check SSH keys:
 Passed
 3: Check environment variables (e.g. HOME, WORK, SCRATCH) and file system access:
 Passed
 4: Check user's queue accessibility (Stampede2 Only):
 Passed
 5: Check allocation balance:
 Warning: One of your projects 'ABC-123' has negative balance -1511.194.
 Passed
 6: Check quota for $HOME and $WORK spaces:
 Passed
 7: Check module environment:
 Passed
 8: Check compilers:
 Failed
 Error: Compiler icc is not available at this time!
 Error: Compiler icpc is not available at this time!
 Error: Compiler ifort is not available at this time!
 Please check your $PATH again, compilers are missing.
 If you unload the compilers on purpose, please ignore this test.
 9: Check scheduler commands:
 Passed

 2(out of 9) failure in sanitycheck.

SanityTool Features
• Applicable to almost all supercomputer systems
 (and personal computers)
• Independent of system configurations or settings
• Work for different kinds of shell (bash, csh, zsh, etc.)
• Easy for users to remember and run
• Flexible to be run almost any time
• Full of practical tests (and still extending)

7/21/23 24

Overall Design

7/21/23 25

SSH_Perm
sanitycheck (top level executable):

Ø collect tests
Ø launch tests
Ø present results

utility:
Ø run_cmd
Ø capture_cmd
Ø capture_err
Ø string_parse

SSH_key

Allocation
Quota

Modules
Compilers
License

tests:

Other tests

Your own tests here!Users

Currently Supported Tests
Generic Tests:

Valid ssh configurations
File system accessibility
Proper permission of file systems
Usage and quota of file systems
Necessary software licenses
Current module environments
… …

7/21/23 26

Customized Tests:

Necessary preloaded modules
Necessary compiler commands
Necessary scheduler commands
Whether the user is blocked
Users’ allocations and balance
Permission to access to protected data
… …

Customized Testset
The new sanitytool version 2.0 allows users to
create/use their own tests.
$ sanitycheck –t mytestdir

Create your own test case as simple as:
def execute(self):

 Flag=True

 output=capture(“type h5copy”)

 if "not found" in output:

 Flag = False

 self.error_message+=" ERROR: h5copy is not available!”

 return Flag

7/21/23 27

Obtain SanityTool

• Obtain the source code of Sanity Tool
https://github.com/siliu-tacc/sanitytool

• Make sure “python” and “sanitycheck” are accessible
• Go through the tests directory and choose proper tests
• Add more tests modules when necessary
• Run the “sanitycheck” command

7/21/23 28

https://github.com/siliu-tacc/sanitytool

1st hands-on/homework session:
 LMOD and SanityTool

7/21/23 29

LMOD Lab (A):
• Display all available modules on the Frontera system

• View the help information for any specific module if necessary

• Load a few modules you will need for your research

• Make the new collection as the default

7/21/23 30

• Learn more about the Mvapich2 module

• Run “echo $MPICH_HOME”

• Switch to mvapich2 from impi

• Run “echo $MPICH_HOME” again

7/21/23 31

LMOD Lab (B):

Sanitytool Lab:
• Load the “sanitytool” module

• Run “sanitycheck” in your account

• Run “whyblockme” in your account

• Load the “sanitytool” module

• “unset SCRATCH” and run “sanitycheck” again
7/21/23 32

