
Memory Externalization With Memory Externalization With
userfaultfduserfaultfd

Red Hat, Inc.

Andrea Arcangeli
aarcange at redhat.com

LSF/MM Summit
Boston, MA

9 Mar 2015

http://www.redhat.com/

2

Memory Externalization

● Memory externalization is about running a program with part (or
all) of its memory residing on a remote node

● Memory is transferred from the memory node to the compute
node on access

● Memory can be transferred from the compute node to the
memory node if it's not frequently used during memory pressure

● The Kernel needs new VM (as in Virtual Memory) features to
allow this kind of memory externalization

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memorymemory

pressure

3

Postcopy Memory Externalization

● Postcopy live migration is also some some form of memory
externalization

● The compute node is running the qemu live migration
destination

● The memory node is running the qemu live migration source

● If we solve the memory externalization problem in a generic
way that can work for all linux applications, it will also allow
qemu to implement postcopy live migration

– Without requiring any KVM/virt specific patch

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

QEMU
source

QEMU
destination

Postcopy live migration

4

Initial Postcopy Live Migration

● The initial KVM postcopy live migration prototype from Isaku
Yamahata was very inspiring

● Great prototype to demonstrate it, but in production
environments its kernel backend would have disabled:

– Overcommit and swap

– THP

– KSM

– NUMA balancing

– NUMA hard bindings (mbind/set_mempolicy etc..)
● A special device driver would have required special privileges

similar to mlock()

● It could have been hardly adopted by non-virt users
– i.e. volatile pages on tmpfs

5

First problem: userfault

● qemu destination running in the compute node must be notified
the first time a page fault happens if a page is still missing

Destination guest virtual memory (kernel side is a vma)

Unmapped virtual addresses (pages) must trigger userfault on access

6

SIGBUS not enough

● SIGBUS is ok to trap userland accesses (like volatile pages)

● SIGBUS generates failures when kernel code tries to access
the unmapped virtual addresses:

– get_user_pages would return -EFAULT
● KVM page fault
● O_DIRECT I/O

– syscalls using copy_from_user/copy_to_user
● write()
● read()
● ...

● In qemu we might handle a special error from the /dev/kvm
ioctl, but we don't want to handle errors for all syscalls

7

SIGBUS not enough

● SIGBUS requires mprotect(PROT_NONE) at PAGE_SIZE
granularity

– Too many vmas
● Too slow
● -ENOMEM

8

Userfault ideal behavior

● What should happen when an userfault trigger is:

– The page fault of the thread that touched the unmapped
page is blocked

– One thread of the application is notified by the kernel about
an userfault having triggered at a certain address

– The thread transfers the missing page from the (remote)
memory node to the (local) compute node

– The thread maps the missing page at the userfault address
atomically

– The thread tells the kernel to wakeup any blocked page fault
for a certain virtual address range that was just mapped

– The waken up page fault retries the fault and finds the virtual
page mapped

9

ufd = userfaultfd() - syscall

● The userfaultfd syscall provides userland a protocol to control
the userfaults in a way that is transparent to all syscalls and
get_user_pages kernel users

● An userland thread responsible to manage the userfaults can
listen to the userfaultfd to know the virtual addresses where any
userfault triggered

● After resolving the userfaults the thread just need to notify the
kernel about it, to wakeup any page fault that was blocked

● There can be an unlimited number of userfaultfd per process

– Shared libs can use userfaultfd independently of each other
and the main program

– Each userfaultfd must register its own userfault range

10

How to resolve an userfault

● We must fill the unmapped virtual address

● The unmapped virtual address must be filled atomically

● UFFDIO_REGISTER returns the methods that can be used to
resolve an userfault in the uffdio_register.ioctls field:

– UFFDIO_COPY

– UFFDIO_ZEROPAGE

– UFFDIO_WAKE?
● We must decide if UFFDIO_WAKE shall be retained, it's

all about poll semantics..

11

userfaultfd + UFFDIO_COPY

Kernel Userland thread

userfault_addr = read(ufd) & PAGE_MASK

page fault calls handle_userfault()

Recv page in tmp_addr

ioctl(ufd, UFFDIO_COPY,
[uffdio_copy.dst = userfault_addr,

uffdio_copy.src = tmp_addr,
uffdio_copy.len = PAGE_SIZE,

uffdio_copy.mode = 0])

raise POLLIN, wakeup the read(ufd,...)

handle_userfault() waken up and returns

Retry the fault at the userfault_addr
Wait in read(ufd) or for POLLIN from ufd

raise POLLIN & wakeup the read(ufd,...)

12

UFFDIO_COPY

1

2 3 4 5 6

tmp_addr

Guest physical address space

2 3 4 5 6

tmp_addr

Guest physical address space

Copy
Of 1

1

13

UFFDIO_COPY vs _REMAP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

postcopy page latencies

Debug kernel, 10Gb infiniband, with background stream

count (remap)
count (copy)

time (ms)

co
u

nt

14

userfaultfd()

● Userfaultfd(flags)

– Flags
● UFFD_CLOEXEC
● UFFD_NONBLOCK

15

UFFDIO_API

● ioctl(ufd, UFFDIO_API, struct uffdio_api *uffdio_api)

struct uffdio_api {
 /* userland asks for an API number */
 __u64 api;

 /* kernel answers below with the available features for the API */
#define UFFD_BIT_WRITE (1<<0)/* this was a write fault */
 __u64 bits;
 __u64 ioctls;
};

● uffdio_api .api = UFFD_API
– Enforces a known read() protocol

16

UFFD_API
● read(ufd, &buf, 8)

● read(ufd, &buf, 8*N)

read will write “address” into buf:

BUILD_BUG_ON(PAGE_SHIFT < UFFD_BITS);
address &= PAGE_MASK;
if (flags & FAULT_FLAG_WRITE)
 /*
 * Encode "write" fault information in the LSB of the
 * address read by userland, without depending on
 * FAULT_FLAG_WRITE kernel internal value.
 */
 address |= UFFD_BIT_WRITE;
if (reason & VM_UFFD_WP)
 /*
 * Encode "reason" fault information as bit number 1
 * in the address read by userland. If bit number 1 is
 * clear it means the reason is a VM_FAULT_MISSING
 * fault.
 */
 address |= UFFD_BIT_WP;

17

UFFDIO_REGISTER

● ioctl(ufd, UFFDIO_REGISTER, struct uffdio_register *)

struct uffdio_register {
 struct uffdio_range range;
#define UFFDIO_REGISTER_MODE_MISSING ((__u64)1<<0)
#define UFFDIO_REGISTER_MODE_WP ((__u64)1<<1)
 __u64 mode;

 /*
 * kernel answers which ioctl commands are available for the
 * range, keep at the end as the last 8 bytes aren't read.
 */
 __u64 ioctls;
};

● uffdio_api .ioclts = _UFFDIO_COPY|_UFFDIO_ZEROPAGE

18

UFFDIO_COPY

● ioctl(ufd, UFFDIO_COPY, struct uffdio_copy *)

struct uffdio_copy {
 __u64 dst;
 __u64 src;
 __u64 len;
 /*
 * There will be a wrprotection flag later that allows to map
 * pages wrprotected on the fly. And such a flag will be
 * available if the wrprotection ioctl are implemented for the
 * range according to the uffdio_register.ioctls.
 */
#define UFFDIO_COPY_MODE_DONTWAKE ((__u64)1<<0)
 __u64 mode;

 /*
 * "copy" and "wake" are written by the ioctl and must be at
 * the end: the copy_from_user will not read the last 16
 * bytes.
 */
 __s64 copy;
 __s64 wake;
};

● “copy” tells how many bytes copied successfully

19

userfault and KVM

● Thanks to the KVM design (as usual)

– No change to KVM kernel driver was required

– All changes are in the core Linux Virtual Memory

– THP/KSM/NUMA balancing/NUMA bindings are
transparently supported on the userfault memory ranges

● Only the qemu balloon driver will need special handling during
postcopy live migration as MADV_DONTNEED would create
unmapped regions in the userfault area

– If the guest touches ballooned pages inflated during
postcopy live migration, the migration thread should not get
confused about it

● It could use UFFDIO_ZEROPAGE to resolve the ballon
deflate

20

userfault and live snapshotting

● Track wrprotect faults

– Throttle the COW memory allocations
● UFFDIO_REGISTER

– ufddio_register = {.mode =
UFFDIO_REGISTER_MODE_WP}

● UFFDIO_WP ioctl

● Trouble:

– Swap entries requires a wp bit
● Otherwise even a read swapin fault could make the pte

writable if the page is no shared
– VM_FAULT_RETRY may be returned by a swapin just

before UFFDIO_WP marks the swapentry wp
● SIGBUS may be raised if the race triggers

21

userfault on shared memory

● Extend UFFDIO_COPY and VM_UFFD_MISSING to tmpfs

● uffdio_register.ioctls will include UFFDIO_COPY bitflag if
UFFDIO_REGISTER is run on tmpfs backed memory

22

userfault and volatile pages

● Volatile pages are virtual memory ranges that the kernel can
discard under memory pressure without swapping them out

● The volatile pages patchset contemplated optionally to provide
the userfault-like SIGBUS behavior on access

● The userfaultfd can provide the notification to applications using
volatile pages after they've been reclaimed

23

Userfault kernel patchset

● Last submit against 3.19-rc:

– http://thread.gmane.org/gmane.linux.kernel.mm/123575
– https://lists.gnu.org/archive/html/qemu-devel/2015-03/msg01081.html

– git clone git://git.kernel.org/pub/scm/linux/kernel/git/andrea/aa.git -b userfault

● Feedback is welcome to finalize the kernel API

http://thread.gmane.org/gmane.linux.kernel.mm/123575

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

