
The sysfs Filesystem

Patrick Mochel
mochel@digitalimplant.org

Abstract

sysfs is a feature of the Linux 2.6 kernel that al-
lows kernel code to export information to user
processes via an in-memory filesystem. The or-
ganization of the filesystem directory hierarchy
is strict, and based the internal organization of
kernel data structures. The files that are created
in the filesystem are (mostly) ASCII files with
(usually) one value per file. These features en-
sure that the information exported is accurate
and easily accessible, making sysfs one of the
most intuitive and useful features of the 2.6 ker-
nel.

Introduction

sysfs is a mechanism for representing kernel
objects, their attributes, and their relationships
with each other. It provides two components:
a kernel programming interface for exporting
these items via sysfs, and a user interface to
view and manipulate these items that maps
back to the kernel objects which they represent.
The table below shows the mapping between
internel (kernel) constructs and their external
(userspace) sysfs mappings.

Internal External
Kernel Objects Directories
Object Attributes Regular Files
Object Relationships Symbolic Links

sysfs is a core piece of kernel infrastructure,
which means that it provides a relatively sim-
ple interface to perform a simple task. Rarely
is the code overly complicated, or the descrip-
tions obtuse. However, like many core pieces
of infrastructure, it can get a bit too abstract
and far removed to keep track of. To help al-
leviate that, this paper takes a gradual approach
to sysfs before getting to the nitty-gritty details.

First, a short but touching history describes its
origins. Then crucial information about mount-
ing and accessing sysfs is included. Next,
the directory organization and layout of sub-
systems in sysfs is described. This provides
enough information for a user to understand the
organization and content of the information that
is exported through sysfs, though for reasons of
time and space constraints, not every object and
its attributes are described.

The primary goal of this paper is to pro-
vide a technical overview of the internal sysfs
interface—the data structures and the func-
tions that are used to export kernel con-
structs to userspace. It describes the functions
among the three concepts mentioned above—
Kernel Objects, Object Attributes, and Object
Relationships—and dedicates a section to each
one. It also provides a section for each of the
two additional regular file interfaces created to
simplify some common operations—Attribute
Groups and Binary Attributes.

sysfs is a conduit of information between the
kernel and user space. There are many op-

1

portunities for user space applications to lever-
age this information. Some existing uses are
the ability to I/O Scheduler parameters and the
udev program. The final section describes a
sampling of the current applications that use
sysfs and attempts to provide enough inspira-
tion to spawn more development in this area.

Because it is a simple and mostly abstract in-
terface, much time can be spent describing its
interactions with each subsystem that uses it.
This is especially true for the kobject and driver
models, which are both new features of the 2.6
kernel and heavily intertwined with sysfs. It
would be impossible to do those topics justice
in such a medium and are left as subjects for
other documents. Readers still curious in these
and related topics are encouraged to read [4].

1 The History of sysfs

sysfs is an in-memory filesystem that was origi-
nally based on ramfs. ramfs was written around
the time the 2.4.0 kernel was being stabilized.
It was an exercise in elegance, as it showed
just how easy it was to write a simple filesys-
tem using the then-new VFS layer. Because
of its simplicity and use of the VFS, it pro-
vided a good base from which to derive other
in-memory based filesystems.

sysfs was originally calledddfs(Device Driver
Filesystem) and was written to debug the new
driver model as it was being written. That de-
bug code had originally used procfs to export a
device tree, but under strict urging from Linus
Torvalds, it was converted to use a new filesys-
tem based on ramfs.

By the time the new driver model was merged
into the kernel around 2.5.1, it had changed
names todriverfsto be a little more descriptive.
During the next year of 2.5 development, the

mount -t sysfs sysfs /sys

Table 1: A sysfs mount command

sysfs /sys sysfs noauto 0 0

Table 2: A sysfs entry in /etc/fstab

infrastructural capabilities of the driver model
and driverfs began to prove useful to other sub-
systems. kobjects were developed to provide
a central object management mechanism and
driverfs was converted to sysfs to represent its
subsystem agnosticism.

2 Mounting sysfs

sysfs can be mounted from userspace just like
any other memory-based filesystem. The com-
mand for doing so is listed in Table 1.

sysfs can also be mounted automatically on
boot using the file/etc/fstab . Most distri-
butions that support the 2.6 kernel have entries
for sysfs in/etc/fstab . An example entry
is shown in Table 2.

Note that the directory that sysfs is mounted on:
/sys . That is the de facto standard location
for the sysfs mount point. This was adopted
without objection by every major distribution.

3 Navigating sysfs

Since sysfs is simply a collection of directo-
ries, files, and symbolic links, it can be navi-
gated and manipulated using simple shell util-
ities. The author recommends thetree(1)
utility. It was an invaluable aide during the de-
velopment of the core kernel object infrastruc-
ture.

2

/sys/
|-- block
|-- bus
|-- class
|-- devices
|-- firmware
|-- module
‘-- power

Table 3: Top level sysfs directories

At the top level of the sysfs mount point are a
number of directories. These directories rep-
resent the major subsystems that are registered
with sysfs. At the time of publication, this
consisted of the directories listed in Table 3.
These directories are created at system startup
when the subsystems register themselves with
the kobject core. After they are initialized, they
begin to discover objects, which are registered
within their respective directories.

The method by which objects register with
sysfs and how directores are created is ex-
plained later in the paper. In the meantime,
the curious are encouraged to meander on their
own through the sysfs hierarchy, and the mean-
ing of each subsystem and their contents fol-
lows now.

3.1 block

The block directory contains subdirectories
for each block device that has been discovered
in the system. In each block device’s directory
are attributes that describe many things, includ-
ing the size of the device and the dev_t number
that it maps to. There is a symbolic link that
points to the physical device that the block de-
vice maps to (in the physical device tree, which
is explained later). And, there is a directory that
exposes an interface to the I/O scheduler. This
interface provides some statistics about about
the device request queue and some tunable fea-
tures that a user or administrator can use to

bus/
|-- ide
|-- pci
|-- scsi
‘-- usb

Table 4: The bus directory

optimize performance, including the ability to
dyanmically change the I/O scheduler to use.

Each partition of each block device is repre-
sented as a subdirectory of the block device.
Included in these directories are read-only at-
tributes about the partitions.

3.2 bus

The bus directory contains subdirectories for
each physical bus type that has support regis-
tered in the kernel (either statically compiled or
loaded via a module). Partial output is listed in
Table 4.

Each bus type that is represented has two sub-
directories: devices and drivers . The
devices directory contains a flat listing of ev-
ery device discovered on that type of bus in the
entire system. The devices listed are actually
symbolic links that point to the device’s direc-
tory in the global device tree. An example list-
ing is shown in Table 5.

The drivers directory contains directories
for each device driver that has been registered
with the bus type. Within each of the drivers’
directories are attributes that allow viewing and
manipulation of driver parameters, and sym-
bolic links that point to the physical devices (in
the global device tree) that the driver is bound
to.

3

bus/pci/devices/
|-- 0000:00:00.0 -> ../../../devices/pci0000:00/0000:00:00.0
|-- 0000:00:01.0 -> ../../../devices/pci0000:00/0000:00:01.0
|-- 0000:01:00.0 -> ../../../devices/pci0000:00/0000:00:01.0/0000:01:00.0
|-- 0000:02:00.0 -> ../../../devices/pci0000:00/0000:00:1e.0/0000:02:00.0
|-- 0000:02:00.1 -> ../../../devices/pci0000:00/0000:00:1e.0/0000:02:00.1
|-- 0000:02:01.0 -> ../../../devices/pci0000:00/0000:00:1e.0/0000:02:01.0
‘-- 0000:02:02.0 -> ../../../devices/pci0000:00/0000:00:1e.0/0000:02:02.0

Table 5: PCI devices represented inbus/pci/devices/

class/
|-- graphics
|-- input
|-- net
|-- printer
|-- scsi_device
|-- sound
‘-- tty

Table 6: The class directory

3.3 class

The class directory contains representations
of every device class that is registered with the
kernel. A device class describes a functional
type of device. Examples of classes are shown
in Table 6.

Each device class contains subdirectories for
each class object that has been allocated and
registered with that device class. For most of
class device objects, their directories contain
symbolic links to the device and driver directo-
ries (in the global device hierarchy and the bus
hierarchy respectively) that are associated with
that class object.

Note that there is not necessarily a 1:1 mapping
between class objects and physical devices; a
physical device may contain multiple class ob-
jects that perform a different logical function.
For example, a physical mouse device might
map to a kernel mouse object, as well as a
generic “input event” device and possibly a “in-
put debug” device.

Each class and class object may contain at-
tributes exposing parameters that describe or
control the class object. The contents and for-
mat, though, are completely class dependent
and depend on the support present in one’s ker-
nel.

3.4 devices

The devices directory contains the global
device hierarchy. This contains every physi-
cal device that has been discovered by the bus
types registered with the kernel. It represents
them in an ancestrally correct way—each de-
vice is shown as a subordinate device of the de-
vice that it is physically (electrically) subordi-
nate to.

There are two types of devices that are excep-
tions to this representation: platform devices
and system devices. Platform devices are pe-
ripheral devices that are inherent to a particular
platform. They usually have some I/O ports,
or MMIO, that exists at a known, fixed loca-
tion. Examples of platform devices are legacy
x86 devices like a serial controller or a floppy
controller, or the embedded devices of a SoC
solution.

System devices are non-peripheral devices that
are integral components of the system. In many
ways, they are nothing like any other device.
They may have some hardware register access
for configuration, but do not have the capabil-
ity to transfer data. They usually do not have

4

drivers which can be bound to them. But, at
least for those represented through sysfs, have
some architecture-specific code that configures
them and treats them enough as objects to ex-
port them. Examples of system devices are
CPUs, APICs, and timers.

3.5 firmware

The firmware directory contains inter-
faces for viewing and manipulating firmware-
specific objects and attributes. In this case,
‘firmware’ refers to the platform-specific code
that is executed on system power-on, like the
x86 BIOS, OpenFirmware on PPC platforms,
and EFI on ia64 platforms.

Each directory contains a set of objects and at-
tributes that is specific to the firmware “driver
in the kernel.” For example, in the case
of ACPI, every object found in the ACPI
DSDT table is listed infirmware/acpi/
namespace/ directory.

3.6 module

Themodule directory contains subdirectories
for each module that is loaded into the kernel.
The name of each directory is the name of the
module—both the name of the module object
file and the internal name of the module. Ev-
ery module is represented here, regardless of
the subsystem it registers an object with. Note
that the kernel has a single global namespace
for all modules.

Within each module directory is a subdirectory
calledsections . This subdirectory contains
attributes about the module sections. This in-
formation is used for debugging and generally
not very interesting.

Each module directory also contains at least
one attribute:refcnt . This attributes displays

the current reference count, or number of users,
of the module. This is the same value in the
fourth column oflsmod(8) output.

3.7 power

The power directory represents the under-
used power subsystem. It currently contains
only two attributes:disk which controls the
method by which the system will suspend to
disk; andstate , which allows a process to en-
ter a low power state. Reading this file displays
which states the system supports.

4 General Kernel Information

4.1 Code Organization

The code for sysfs resides infs/sysfs/
and its shared function prototypes are in
include/linux/sysfs.h . It is relatively
small (~2000 lines), but it is divided up among
9 files, including the shared header file. The
organization of these files is listed below. The
contents of each of these files is described in
the next section.

• include/linux/sysfs.h - Shared
header file containing function prototypes
and data structure definitions.

• fs/sysfs/sysfs.h - Internal header
file for sysfs. Contains function definitions
shared locally among the sysfs source.

• fs/sysfs/mount.c - This contains
the data structures, methods, and initial-
ization functions necessary for interacting
with the VFS layer.

5

• fs/sysfs/inode.c - This file con-
tains internal functions shared among the
sysfs source for allocating and freeing the
core filesystem objects.

• fs/sysfs/dir.c - This file contains
the externally visible sysfs interface re-
sponsible for creating and removing direc-
tories in the sysfs hierarchy.

• fs/sysfs/file.c - This file contains
the externally visible sysfs interface re-
sponsible for creating and removing reg-
ular, ASCII files in the sysfs hiearchy.

• fs/sysfs/group.c - This file con-
tains a set of externally-visible helpers that
aide in the creation and deletion of multi-
ple regular files at a time.

• fs/sysfs/symlink.c - This file con-
tains the externally- visible interface re-
sponsible for creating and removing sym-
link in the sysfs hierarchy.

• fs/sysfs/bin.c - This file contains
the externally visible sysfs interface re-
sponsible for creating and removing bi-
nary (non-ASCII) files.

4.2 Initialization

sysfs is initialized infs/sysfs/mount.c ,
via thesysfs_init function. This function
is called directly by the VFS initialization code.
It must be called early, since many subsystems
depend on sysfs being initialized to register ob-
jects with. This function is responsible for do-
ing three things.

• Creating a kmem_cache. This cache
is used for the allocation ofsysfs_
dirent objects. These are discussed in
a later section.

• Registering with the VFS. register_
filesystem() is called with the
sysfs_fs_type object. This sets up
the appropriate super block methods and
adds a filesystem with the namesysfs .

• Mounts itself internally. This is done to
ensure that it is always available for other
kernel code to use, even early in the boot
process, instead of depending on user in-
teraction to explicitly mount it.

Once these actions complete, sysfs is fully
functional and ready to use by all internal code.

4.3 Configuration

sysfs is compiled into the kernel by default.
It is dependent on the configuration option
CONFIG_SYSFS. CONFIG_SYSFSis only
visible if the CONFIG_EMBEDDEDoption is
set, which provides many options for config-
uring the kernel for size-constrained envrion-
ments. In general, it is considered a good idea
to leave sysfs configured in a custom-compiled
kernel. Many tools currently do, and probably
will in the future, depend on sysfs being present
in the system.

4.4 Licensing

The sysfs code is licensed under the GPLv2.
While most of it is now original, it did originate
as a clone of ramfs, which is licensed under the
same terms. All of the externally-visible inter-
faces are original works, and are of course also
licensed under the GPLv2.

The external interfaces are exported to mod-
ules, however only to GPL-compatible mod-
ules, using the macroEXPORT_SYMBOL_
GPL. This is done for reasons of maintainabil-
ity and derivability. sysfs is a core component

6

of the kernel. Many subsystems rely on it, and
while it is a stable piece of infrastructure, it oc-
casionally must change. In order to develop
the best possible modifications, it’s imperative
that all callers of sysfs interfaces be audited and
updated in lock-step with any sysfs interface
changes. By requiring that all users be licensed
in a GPL manner, and hopefully merged into
the kernel, the level of difficulty of an interface
change can be greatly reduced.

Also, since sysfs was developed initially as an
extension of the driver model and has gone
through many iterations of evolution, it has a
very explicit interaction with its users. To de-
velop code that used sysfs but was not copied
or derived from an existing in-kernel GPL-
based user would be difficult, if not impossible.
By requiring GPL-compatibility in the users of
sysfs, this can be made explicit and help pre-
vent falsification of derivability.

5 Kernel Interface Overview

The sysfs functions visible to kernel code are
divided into three categories, based on the type
of object they are exporting to userspace (and
the type of object in the filesystem they create).

• Kernel Objects (Directories).

• Object Attributes (Regular Files).

• Object Relationships (Symbolic Links).

There are also two other sub-categories of ex-
porting attributes that were developed to acco-
modate users that needed to export other files
besides single, ASCII files. Both of these cate-
gories result in regular files being created in the
filesystem.

• Attribute Groups

• Binary Files

The first parameter to all sysfs functions is the
kobject (hereby referenced ask), which is be-
ing manipulated. The sysfs core assumes that
this kobject will remain valid throughout the
function; i.e., they will not be freed. The caller
is always responsible for ensuring that any nec-
essary locks that would modify the object are
held across all calls into sysfs.

For almost every function (the exception be-
ing sysfs_create_dir), the sysfs core as-
sumes thatk->dentry is a pointer to a valid
dentry that was previously allocated and initial-
ized.

All sysfs function calls must be made from pro-
cess context. They should also not be called
with any spinlocks held, as many of them take
semaphores directly and all call VFS functions
which may also take semaphores and cause the
process to sleep.

6 Kernel Objects

Kernel objects are exported as directories via
sysfs. The functions for manipulating these di-
rectories are listed in Table 7.

sysfs_create_dir is the only sysfs func-
tion that does not rely on a directory having
already been created in sysfs for the kobject
(since it performs the crucial action of creating
that directory). It does rely on the following
parameters being valid:

• k->parent

• k->name

7

int sysfs_create_dir(struct kobject ∗ k);

void sysfs_remove_dir(struct kobject ∗ k);

int sysfs_rename_dir(struct kobject ∗, const char ∗new_name);

Table 7: Functions for manipulating sysfs directories.

6.1 Creating Directories

These parameters control where the directory
will be located and what it will be called. The
location of the new directory is implied by the
value ofk->parent ; it is created as a subdi-
rectory of that. In all cases, the subsystem (not
a low-level driver) will fill in that field with in-
formation it knows about the object when the
object is registered with the subsystem. This
provides a simple mechanism for creating a
complete user-visible object tree that accurately
represents the internal object tree within the
kernel.

It is possible to callsysfs_create_dir
without k->parent set; it will simply cre-
ate a directory at the very top level of the sysfs
filesystem. This should be avoided unless one
is writing or porting a new top-level subsystem
using the kobject/sysfs model.

When sysfs_create_dir() is called, a
dentry (the object necessary for most VFS
transactions) is allocated for the directory, and
is placed ink->dentry . An inode is cre-
ated, which makes a user-visible entity, and
that is stored in the new dentry. sysfs fills in
thefile_operations for the new directory
with a set of internal methods that exhibit stan-
dard behavior when called via the VFS system
call interface. The return value is 0 on success
and a negative errno code if an error occurs.

6.2 Removing Directories

sysfs_remove_dir will remove an ob-
ject’s directory. It will also remove any regu-
lar files that reside in the directory. This was
an original feature of the filesystem to make it
easier to use (so all code that created attributes
for an object would not be required to be called
when an object was removed). However, this
feature has been a source of several race con-
ditions throughout the years and should not be
relied on in the hopes that it will one day be
removed. All code that adds attributes to an ob-
ject’s directory should explicitly remove those
attributes when the object is removed.

6.3 Renaming Directories

sysfs_rename_dir is used to give a direc-
tory a new name. When this function is called,
sysfs will allocate a new dentry for the kobject
and call the kobject routine to change the ob-
ject’s name. If the rename succeeds, this func-
tion will return 0. Otherwise, it will return a
negative errno value specifying the error that
occurred.

It is not possible at this time to move a sysfs
directory from one parent to another.

7 Object Attributes

Attributes of objects can be exposed via sysfs as
regular files using thestruct attribute

8

int sysfs_create_file(struct kobject ∗, const struct attribute ∗);

void sysfs_remove_file(struct kobject ∗, const struct attribute ∗);

int sysfs_update_file(struct kobject ∗, const struct attribute ∗);

Table 8: Functions for manipulating sysfs files

struct device_attribute {
struct attribute attr;

ssize_t (∗show)(struct device ∗dev, char ∗buf);

ssize_t (∗store)(struct device ∗dev, const char ∗buf, size_t count);

};

int device_create_file(struct device ∗device,

struct device_attribute ∗entry);

void device_remove_file(struct device ∗dev,

struct device_attribute ∗attr);

Table 10: A wrapper forstruct attribute from the Driver Model

struct attribute {
char ∗name;

struct module ∗owner;

mode_t mode;

};

Table 9: Thestruct attribute data type

data type described in Table 9 and the functions
listed in Table 8.

7.1 Creating Attributes

sysfs_create_file() uses thename
field to determine the file name of the attribute
and themode field to set the UNIX file mode
in the file’s inode. The directory in which the
file is created is determined by the location of
the kobject that is passed in the first parameter.

7.2 Reference Counting and Modules

Theowner field may be set by the the caller to
point to the module in which the attribute code
exists. This shouldnot point to the module that
owns the kobject. This is because attributes can
be created and removed at any time. They do
not need to be created when a kobject is regis-
tered; one may load a module with several at-
tributes for objects of a particular type that are
registered after the objects have been registered
with their subsystem.

For example, network devices have a set of
statistics that are exported as attributes via
sysfs. This set of statistics attributes could re-
side in an external module that does not need
to be loaded in order for the network devices
to function properly. When it is loaded, the
attributes contained within are created for ev-
ery registered network device. This module
could be unloaded at any time, removing the

9

attributes from sysfs for each network device.
In this case, themodule field should point to
the module that contains the network statistic
attributes.

The owner field is used for reference count-
ing when the attribute file is accessed. The file
operations for attributes that the VFS calls are
set by sysfs with internal functions. This allows
sysfs to trap each access call and perform nec-
essary actions, and it allows the actual methods
that read and write attribute data to be greatly
simplified.

When an attribute file is opened, sysfs incre-
ments the reference count of both the kobject
represented by the directory where the attribute
resides, and the module which contains the at-
tribute code. The former operation guarantees
that the kobject will not be freed while the at-
tribute is being accessed. The latter guarantees
that the code which is being executed will not
be unloaded from the kernel and freed while the
attribute is being accessed.

7.3 Wrappable Objects

One will notice thatstruct attribute
does not actually contain the methods to read
or write the attribute. sysfs does not specify the
format or parameters of these functions. This
was an explicit design decision to help ensure
type safety in these functions, and to aid in sim-
plifying the downstream methods.

Subsystems that use sysfs attributes create
a new data type that encapsulatesstruct
attribute , like in Table 10. By defining a
wrapping data type and functions, downstream
code is protected from the low-level details of
sysfs and kobject semantics.

When an attribute is read or written, sysfs ac-
cesses a special data structure, through the kob-

ject, called a kset. This contains the base opera-
tions for reading and writing attributes for kob-
jects of a particular type. These functions trans-
late the kobject and attribute into higher level
objects, which are then passed to theshow and
store methods described in Table 10. Again,
this helps ensure type safety, because it guar-
antees that the downstream function receives a
higher-level object that it use directly, without
having to translate it.

Many programmers are inclined to cast be-
tween object types, which can lead to hard-to-
find bugs if the position of the fields in a struc-
ture changes. By using helper functions within
the kernel that perform an offset-based pointer
subtraction to translate between object types,
type safety can be guaranteed, regardless if the
field locations may change. By centralizing the
translation of objects in this manner, the code
can be easier to audit in the event of change.

7.4 Reading and Writing Attributes

sysfs attempts to make reading and writing at-
tributes as simple as possible. When an at-
tribute is opened, aPAGE_SIZE buffer is al-
located for transferring the data between the
kernel and userspace. When an attribute
is read, this buffer is passed to a down-
stream function (e.g.,struct device_
attribute::show() which is responsible
for filling in the data and formatting it appro-
priately. This data is then copied to userspace.

When a value is written to a sysfs attribute file,
the data is first copied to the kernel buffer, then
it is passed to the downstream method, along
with the size of the buffer in bytes. This method
is responsible for parsing the data.

It is assumed that the data written to the buffer
is in ASCII format. It is also implied that the
size of the data written is less than one page in

10

size. If the adage of having one value per file
is followed, the data should be well under one
page in size. Having only one value per file also
eliminates the need for parsing complicated
strings. Many bugs, especially in text parsing,
are propogated throughout the kernel by copy-
ing and pasting code thought to be bug-free. By
making it easy to export one value per file, sysfs
eliminates the need for copy-and-paste devel-
opment, and prevents these bugs from propa-
gating.

7.5 Updating an attribute

If the data for an attribute changes, ker-
nel code can notify a userspace process that
may be waiting for updates by modifying the
timestamp of the file usingsysfs_update_
file() . This function will also call dnotify,
which some applications use to wait for modi-
fied files.

8 Object Relationships

A relationship between two objects can be ex-
pressed in sysfs by the use of a symbolic link.
The functions for manipulating symbolic links
in sysfs are shown in Table 11. A relationship
within the kernel may simply be a pointer be-
tween two different objects. If both of these ob-
jects are represented in sysfs with directories,
then a symbolic link can be created between
them and prevent the addition of redundant in-
formation in both objects’ directories.

When creating a symbolic link between two ob-
jects, the first argument is the kobject that is be-
ing linkedfrom. This represents the directory in
which the symlink will be created. The second
argument is the kobject which is being linked
to. This is the directory that the symlink will

point to. The third argument is the name of the
symlink that will appear in the filesystem.

To illustrate this, consider a PCI network device
and driver. When the system boots, the PCI de-
vice is discovered and a sysfs directory is cre-
ated for it, long before it is bound to a specific
driver. At some later time, the network driver
is loaded, which may or may not bind to any
devices. This is a different object type than the
physical PCI device represents, so a new direc-
tory is created for it.

Their association is illustrated in Table 12.
Shown is the driver’s directory in sysfs, which
is named after the name of the driver module.
This contains a symbolic link that points to the
devices to which it is bound (in this case, just
one). The name of the symbolic link and the
target directory are the same, and based on the
physical bus ID of the device.

9 Attribute Groups

The attribute group interface is a simplified in-
terface for easily adding and removing a set of
attributes with a single call. Theattribute_
group data structure and the functions defined
for manipulating them are listed in Table 13.

An attribute group is simply an array of at-
tributes to be added to an object, as represented
by theattrs field. Thenamefield is optional.
If specified, sysfs will create a subdirectory of
the object to store the attributes in the group.
This can be a useful aide in organizing large
numbers of attributes.

Attribute groups were created to make it easier
to keep track of errors when registering multi-
ple attributes at one time, and to make it more
compelling to clean up all attributes that a piece
of code may create for an object. Attributes can

11

int sysfs_create_link(struct kobject ∗kobj, struct kobject ∗target,

char ∗name);

void sysfs_remove_link(struct kobject ∗, char ∗name);

Table 11: Functions for manipulating symbolic links in sysfs

$ tree -d bus/pci/drivers/e1000/
bus/pci/drivers/e1000/
‘-- 0000:02:01.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:02:01.0

Table 12: An example of a symlink in sysfs.

be added and removed from the group without
having to change the registration and unregis-
tration functions.

When a group of attributes is added, the return
value is noted for each one. If any one fails to
be added (because of e.g. low memory condi-
tions or duplicate attribute names), the previ-
ously added attributes of that group will be re-
moved and the error code will be returned to the
caller. This allows downstream code to retain a
simple and elegant error handling mechanism,
no matter how many attributes it creates for an
object.

When an attribute group is removed, all of the
attributes contained in it are removed. If a sub-
directory was created to house the attributes, it
is also removed.

Good examples of attribute groups and their
uses can be found in the network device statis-
tics code. Its sysfs interface is in the file
net/core/net-sysfs.c .

10 Binary Attributes

Binary files are a special class of regular files
that can be exported via sysfs using the data
structure and functions listed in Table 14. They

exist to export binary data structures that are ei-
ther best left formatted and parsed in a more
flexible environment, like userspace process
context because they have a known and stan-
dard format (e.g., PCI Configuration Space
Registers); or because their use is strictly in bi-
nary format (e.g., binary firmware images).

The use of binary files is akin to the procfs
interface, though sysfs still traps the read and
write methods of the VFS before it calls the
methods instruct bin_attribute . It
allows more control over the format of the
data, but is more difficult to manage. In gen-
eral, if there is a choice over which interface
to use—regular attributes or binary attributes,
there should be no compelling reasons to use
binary attributes. They should only be used for
specific purposes.

11 Current sysfs Users

The number of applications that use sysfs di-
rectly are few. It already provides a substantial
amount of useful information in an organized
format, so the need for utilities to extract and
parse data is minimal. However, there are a few
users of sysfs, and the infrastructure to support
more is already in place.

12

struct attribute_group {
char ∗name;

struct attribute ∗∗attrs;

};

int sysfs_create_group(struct kobject ∗,

const struct attribute_group ∗);

void sysfs_remove_group(struct kobject ∗,

const struct attribute_group ∗);

Table 13: Attribute Groups

struct bin_attribute {
struct attribute attr;

size_t size;

void ∗private;

ssize_t (∗read)(struct kobject ∗, char ∗, loff_t, size_t);

ssize_t (∗write)(struct kobject ∗, char ∗, loff_t, size_t);

int (∗mmap)(struct kobject ∗, struct bin_attribute ∗attr,

struct vm_area_struct ∗vma);

};

int sysfs_create_bin_file(struct kobject ∗ kobj,

struct bin_attribute ∗ attr);

int sysfs_remove_bin_file(struct kobject ∗ kobj,

struct bin_attribute ∗ attr);

Table 14: Binary Attributes

udev was written in 2003 to provide a
dynamic device naming service based on
user/administrator/distro-specified rules. It in-
teracts with the/sbin/hotplug program,
which gets called by the kernel when a variety
of different events occur. udev uses information
stored in sysfs about devices to name and con-
figure them. More importantly, it is used as a
building block by other components to provide
a feature-rich and user-friendly device manage-
ment environment.

Information about udev can be found at ker-
nel.org [2]. Information aboutHAL —an
aptly named hardware abstraction layer—can

be found at freedesktop.org [1].

udev is based onlibsysfs, a C library written
to provide a robust programming interface for
accessing sysfs objects and attributes. Informa-
tion about libsysfs can be found at SourceForge
[3]. The udev source contains a version of lib-
sysfs that it builds against. On some distribu-
tions, it is already installed. If so, header files
can be found in/usr/include/sysfs/
and shared libraries can be found in/lib/
libsysfs.so.1 .

The pciutils package has been updated to use
sysfs to access PCI configuration information,

13

instead of using/proc/bus/pci/ .

A simple application for extracting and pars-
ing data from sysfs calledsi has been written.
This utility can be used to display or modify
any attribute, though its true benefit is efforts to
aggregate and format subsystem-specific infor-
mation into an intuitive format. At the time of
publication, it is still in early alpha stages. It
can be found at kernel.org [5].

12 Conclusion

sysfs is a filesystem that allows kernel subsys-
tems to export kernel objects, object attributes,
and object relationships to userspace. This in-
formation is strictly organized and usually for-
matted simply in ASCII, making it very acces-
sible to users and applications. It provides a
clear window into the kernel data structures and
the physical or virtual objects that they control.

sysfs provides a core piece of infrastructure in
the much larger effort of building flexible de-
vice and system management tools. To do this
effectively, it retains a simple feature set that
eases the use of its interfaces and data repre-
sentations easy.

This paper has described the sysfs kernel inter-
faces and the userspace representation of kernel
constructs. This paper has hopefully demys-
tified sysfs enough to help readers understand
what sysfs does and how it works, and with a
bit of luck, encouraged them to dive head first
into sysfs, whether it’s from a developer stand-
point, a user standpoint, or both.

References

[1] freedesktop.org. hal, 2005.
http://hal.freedesktop.org/
wiki/Software_2fhal .

[2] Greg Kroah-Hartman. udev, 2004.
http://www.kernel.org/pub/
linux/utils/kernel/hotplug/
udev.html .

[3] The libsysfs Developers. libsysfs, 2003.
http:
//linux-diag.sourceforge.
net/Sysfsutils.html .

[4] LWN.net. 2.6 driver porting series, 2003.
http://lwn.net/Articles/
driver-porting/ .

[5] Patrick Mochel. si, 2005.http://
kernel.org/pub/linux/kernel/
people/mochel/tools/si/ .

14

