The never-ending saga
of...

Linux Plumbers Conference, 2021

Will Deacon <will@kernel.org>

22222222 -Confidential ClndrOid

Mega thread alert!

Thread overview: 122+ messages / expand[flat|nested] mbox.gz
2021-06-04 10:12 Peter Zijlstra [this message]

Let's see if we can make any sense of it...
(also see my LPC session last year)

2021 | Non-Confidential android

https://lore.kernel.org/r/YLn8dzbNwvqrqqp5@hirez.programming.kicks-ass.net

Recap: What is a control dependency?

o Theresult of aread is used as input to a condition guarding — x = READ_ONCE (*foo) ;
a write L= > 42
L ,WRITE ONCE (*bar, 1);

o Ensures the write is ordered after the read (i.e. the
write cannot be made visible to other CPUs until the

condition has been resolved by the read) LDR X0, [Xfoo]
CMP X0, #42
o Not all of the writes are annotated in practice B.LE 1f
m i.e. ifthereisn't a datarace MOV X1, #1

STR X1, [Xbar]

o Used instead of (stronger) acquire memory barriers on some
fast paths in the Linux Kernel e Read = write generally ordered
by all CPU architectures

o Can be broken by the compiler e Read = read control
dependencies can often be

reordered by hardware!

o Can be broken by the CPU droid
anarol

“Nice control dependency you got here. Be a shame if
anything happened to it.” -- Al Capone

android

Breaking control dependencies: Mob boss #1

Compiler transformations

o

Condition optimised away (evaluates to constant)
Write occurs regardless of condition

Conditional instructions
o See later slide

Speculative stores
o Prevented by -fno-allow-store-data-races?

Don't really feel like “real” code examples...
o Butif this goes wrong, it will be subtle and
un-debuggable
o Syntactic vs semantic dependencies

See memory-barriers. txt for more examples

#define MAX 1
X = READ_ONCE(*fOO);

if (x $ MAX == 0)
WRITE ONCE (*bar, 1);

x = READ ONCE (*foo) ;

if (x > 42) {
WRITE ONCE (*bar, 1);
frob () ;

} else {
WRITE ONCE (*bar, 1);
twiddle () ;

android

Breaking control dependencies: Mob boss #2

CPU reordering

o Speculative stores

o Givesrise to “thin-air” values!

o Value prediction? Languages Hardware

o Write occurs regardless of condition
o Conditional instructions

o Retrospective relaxation/clarification o
o Treading on thinice

android

Breaking control dependencies

CPU reordering on arm64

o Speeulativestores
o Thankfully doesn’t happen yet!

o Write occurs regardless of condition

o Conditional instructions >
o Look, no conditional branch!

o Retrospective relaxation/clarification _/

o “Pointed dependencies”
o https:/lore.kernel.org/lkml/20210730172020.GA32396@knuck

les.cs.ucl.ac.uk/

X = READ_ONCE(*fOO);
if (x > 42) {
WRITE ONCE (*bar, 1);
} else {
WRITE ONCE (*bar, 2);
}
WRITE ONCE (*baz, 3);

———>8

LDR X0, [Xfoo]
MOV X1, #1
MOV X2, #2
MOV X3, #3

// X4 = X0 > 42 2 X1 : X2
CMP X0, #42
CSEL X4, X1, X2, GT

STR X4, [Xbar]

STR X3, [Xbaz] android

https://lore.kernel.org/lkml/20210730172020.GA32396@knuckles.cs.ucl.ac.uk/
https://lore.kernel.org/lkml/20210730172020.GA32396@knuckles.cs.ucl.ac.uk/

“You've got to ask yourself one question: ‘Do I feel
lucky about the compiler's instruction selection
pass?"“ -- Dirty Harry

android

Solution #1: volatile_if ()

“un

#define barrier() asm volatile(::: “memory”)

#define volatile_if(x) if (({
_Bool __x = (x);
BUILD_BUG_ON(__builtin_constant_p(__x));
_-X;

}) && ({ barrier(); 1; }))

o Force the compiler to emit a conditional branch

o Is it robust? ‘x’ can still be optimised and relies (at least) on barrier () being opaque.

o Better-off as a compiler __builtin?
o Not amenable to barrier-based (i.e. smp_load_acquire()) implementation
o Disallow ‘else’ clause to solve “Write occurs regardless of condition” case?

o Unclear impact on codegen

android

Solution #2: Do nothing?
#define volatile_if(x) if (x)

“I'd much rather have that kind of documentation, than have barriers that are magical for
theoretical compiler issues that aren't real, and don't have any grounding in reality.

Without a real and valid example of how this could matter, this is just voodoo
programming.”

-- Linus Torvalds

Q: Will the issues remain theoretical forever?

android

Solution #3: Nuclear option

o Barrier instructions exist exactly for this purpose!
o An easy way out of the problem?

o Per-architecture implementation

o Potential performance hit
o Requires annotation of the load instruction heading the dependency
m Allow the condition to be optimised however the compiler likes
o Applies to all relaxed accesses, even when dependencies are unused

o This is currently my preference for armé64

o Decreasing trust in robustness of dependency ordering
o Further benchmarking on recent CPUs would provide an interesting data point

android

Aside: A better barrier() macro

o Prevent CSE from eliminating barrier () statements
o GCC performs string comparison on the asm volatile block?

o Allow finer-grained control of access types (load/store) ordered by the barrier()
o Load = Load/Store (acquire-like)

o Load = Load (rmb())
o Load/Store = Store (release-like)
o Store = Store (wmb())

android

Thoughts?

Is this a real problem?
Is it worth solving?
Where/when/how should we solve it?

Thank you.

android

Recap: The sorry state of dependency ordering (LPC 2020)

Hardware

Performance

Linux

C Compiler

CPU architectures that some dependencies
enforce externally-visible ordering between memory
accesses

Dependency ordering is generally than using explicit
fences, particularly where the dependency exists naturally as
part of the algorithm.

The asa
basis for RCU, but also control-dependency ordering to
implement ring buffers and parts of the scheduler using
volatile casts (READ ONCE/WRITE ONCE)

No high-performance implementations exist of
memory order consume and the
anyway.

android

