
2021 | Non-Confidential

Page-based Hardware
Attributes (PBHA)
Linux Plumbers Conference, 2021

Will Deacon <will@kernel.org>

2021 | Non-Confidential

Introduction

Who am I and what am I hacking on?

० Active upstream kernel developer, co-maintaining the
arm64 architecture port, locking, atomics, memory
model, TLB, SMMU, ...

० Part of the Android Systems Team at Google
○ Over 3 billion active devices
○ Android Common Kernel
○ SoC agnostic
○ Some visibility into upcoming SoC designs
○ Upstream-first approach

० Active engagements with Arm architecture

2021 | Non-Confidential

Recap: arm64 MMU (CPU and SMMU are similar)

Kernel

EL0

EL1

Userspace

MMU

Memory

VA PA

HypervisorEL2

MMU

IPA

PAIPAVA

Stage 1 Stage 2

Page tables used for address translation, permission checking and memory attributes

S1 page tables

S2 page table

2021 | Non-Confidential

Rough overview of the arm64 PTE format

PBHA ATTRS A D PERMS (RWX) Output Address[47:12] V

????

Cacheability,
shareability, r/w
allocation hints

Accessed
&

dirty Valid

(S)MMU

Fault

Bus transaction
{Physical address, attributes, PBHA}

Virtual address

2021 | Non-Confidential

“When [PBHA is enabled then]
hardware can use that PBHA bit for
IMPLEMENTATION DEFINED purposes

[and] the value of 0 in the PBHA bit
is a safe default setting that gives
the same behavior as when the PBHA
bit is not used for IMPLEMENTATION

DEFINED purposes.”

Currently disabled upstream.

2021 | Non-Confidential

IMPLEMENTATION DEFINED means we have no idea what
these bits do when enabled!

● Are they merely performance hints or do they affect
functionality?

● Must all mappings of a given page use the same bits?
○ Including between CPU and devices?
○ What about speculative accesses (e.g. via the

linear map)?
● What happens when the SMMU is disabled?
● How many bits are available and how do they

correspond to hardware behaviours?
● Can the bit assignments change at runtime?
● How do we expose them to device drivers?
● How do we expose them to userspace?
● How do they interact with virtualisation?

Page-based hardware attributes
(PBHA)

2021 | Non-Confidential

Example of how these bits could be used in a system

CPUs

L2$

Standard Arm IP blocks

System Level Cache (SLC)

To DRAM

DMA

SMMU
Interconnect carrying

PBHA bits

An “invisible SLC” sits immediately before the memory controller and is able to cache all transactions
● Performance and prefetch hints
● Caching policy (beyond r/w allocation)
● QoS
● Data format

PBHA not part of tag PBHA overridden

2021 | Non-Confidential

Problems supporting PBHA for an SLC in Linux
● Architecture

○ Doesn’t specify how stage-1 and stage-2 interact (defined on a per-CPU basis)
○ Need to probe number of bits supported by each CPU

● Functional changes (e.g. data format) appear to be infeasible
○ Presence of cacheable alias with “incorrect” bits can lead to data corruption
○ How to ensure congruence between all virtual aliases (and efficiently)?

● Performance hints look more tractable
○ Firmware description of PBHA encodings

■ Require these to be static once Linux is running?
○ Plumb into DMA_ATTR_*?

■ Looks horribly opaque...
○ Per-page mapping, not per-transaction
○ Needed for anonymous memory or only for driver ioctl()s?

● QoS via resctrl ?

If you know of any other practical use-cases then please shout!

2021 | Non-Confidential

How do we fix it?

Thanks!

<will@kernel.org>

